Modeling Data Correlations in Recommendation
نویسندگان
چکیده
منابع مشابه
modeling loss data by phase-type distribution
بیمه گران همیشه بابت خسارات بیمه نامه های تحت پوشش خود نگران بوده و روش هایی را جستجو می کنند که بتوانند داده های خسارات گذشته را با هدف اتخاذ یک تصمیم بهینه مدل بندی نمایند. در این پژوهش توزیع های فیزتایپ در مدل بندی داده های خسارات معرفی شده که شامل استنباط آماری مربوطه و استفاده از الگوریتم em در برآورد پارامترهای توزیع است. در پایان امکان استفاده از این توزیع در مدل بندی داده های گروه بندی ...
Modeling User Exposure in Recommendation
Collaborative filtering analyzes user preferences for items (e.g., books, movies, restaurants, academic papers) by exploiting the similarity patterns across users. In implicit feedback settings, all the items, including the ones that a user did not consume, are taken into consideration. But this assumption does not accord with the common sense understanding that users have a limited scope and a...
متن کاملUltra accurate personal recommendation via eliminating redundant correlations
In this paper, based on a weighted projection of bipartite user-object network, we introduce a personal recommendation algorithm which has remarkably higher accuracy than the classical algorithm, namely collaborative filtering. In this algorithm, the correlation resulting from a specific attribute may be repeatedly counted in the cumulative recommendations from different objects. By considering...
متن کاملUltra accurate personalized recommendation via eliminating redundant correlations
In this paper, based on a weighted projection of bipartite user-object network, we introduce a personalized recommendation algorithm, called the networkbased inference (NBI), which has higher accuracy than the classical algorithm, namely collaborative filtering. In the NBI, the correlation resulting from a specific attribute may be repeatedly counted in the cumulative recommendations from diffe...
متن کاملEffective Hybrid Recommendation Combining Users-Searches Correlations Using Tensors
Most recommendation methods employ item-item similarity measures or use ratings data to generate recommendations. These methods use traditional two dimensional models to find inter relationships between alike users and products. This paper proposes a novel recommendation method using the multi-dimensional model, tensor, to group similar users based on common search behaviour, and then finding a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2017
ISSN: 2169-3536
DOI: 10.1109/access.2017.2712196